Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Semiconducting polymers offer synthetic tunability, good mechanical properties, and biocompatibility, enabling the development of soft technologies previously inaccessible. Side‐chain engineering is a versatile approach for optimizing these semiconducting materials, but minor modifications can significantly impact material properties and device performance. Carbohydrate side chains have been previously introduced to improve the solubility of semiconducting polymers in greener solvents. Despite this achievement, these materials exhibit suboptimal performance and stability in field‐effect transistors. In this work, structure–property relationships are explored to enhance the device performance of carbohydrate‐bearing semiconducting polymers. Toward this objective, a series of isoindigo‐based polymers with carbohydrate side chains of varied carbon‐spacer lengths is developed. Material and device characterizations reveal the effects of side chain composition on solid‐state packing and device performance. With this new design, charge mobility is improved by up to three orders of magnitude compared to the previous studies. Processing–property relationships are also established by modulating annealing conditions and evaluating device stability upon air exposure. Notably, incidental oxygen‐doping effects lead to increased charge mobility after 10 days of exposure to ambient air, correlated with decreased contact resistance. Bias stress stability is also evaluated. This work highlights the importance of understanding structure–property relationships toward the optimization of device performance.more » « less
- 
            We show here that non-network metallopolymers can possess intrinsic microporosity stemming from contortion introduced by metallocene building blocks. Metallopolymers constructed from ferrocenyl building blocks linked by phenyldiacetylene bridges are synthesized and possess BET surface areas up to 400 m 2 g −1 . As solubility imparted by pendant groups reduces porosity, copolymerization is used to simultaneously improve both accessible surface area and solubility. Spectroscopic analysis provides evidence that mixed valency between neighboring ferrocenyl units is supported in these polymers.more » « less
- 
            Abstract Semiconductors with both high stretchability and self‐healing capability are highly desirable for various wearable devices. Much progress has been achieved in designing highly stretchable semiconductive polymers or composites. The demonstration of self‐healable semiconductive composite is still rare. Here, an extremely soft, highly stretchable, and self‐healable hydrogen bonding cross‐linked elastomer, amide functionalized‐polyisobutylene (PIB‐amide) is developed, to enable a self‐healable semiconductive composite through compounding with a high‐performance conjugated diketopyrrolopyrrole (DPP‐T) polymer. The composite, consisting of 20% DPP‐T and 80% PIB‐amide, shows record high crack‐onset strain (COS ≈1500%), extremely low elastic modulus (E≈1.6 MPa), and unique ability to spontaneously self‐heal atroom temperature within 5 min. Unlike previous works, these unique composite materials also show strain‐independent charge mobility. An in‐depth morphological study based on multi‐model techniques indicate that all composites show blending ratio‐ and stretching‐independent fibril‐like aggregation due to the strong hydrogen bond in elastomer to enable the unique stable charge mobility. This study provides a new direction to develop highly healable and electronically stable semiconductive composite and will enable new applications of stretchable electronics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
